Dynamic Model and Microcalorimetric Soft Sensor Developments
ثبت نشده
چکیده
................................................................................................3.2 3.1 DYNAMIC MODELLING........................................................................3.3 3.1.1 Radical Balances in the Aqueous Phase ...................................................... 3.5 3.1.2 Particle Population Balance ......................................................................... 3.7 3.1.3 Molecular Weight Distribution .................................................................... 3.8 3.1.4 Rates of Polymerisation Reactions .............................................................. 3.9 3.1.5 Reactor Material Balance........................................................................... 3.10 3.1.6 Physical Parameters ................................................................................... 3.10 3.1.6.1 Monomer Concentrations in Multiple Phases................................. 3.10 3.1.6.2 Volumes of Phases .......................................................................... 3.12 3.1.6.3 Swollen Radius of a Particle ........................................................... 3.13 3.1.6.4 Probability Functions ...................................................................... 3.14 3.1.6.5 Concentration of Micelles............................................................... 3.14 3.1.6.6 Critical Degrees of Polymerisation ................................................. 3.15 3.1.7 Rate Coefficients........................................................................................ 3.15 3.1.7.1 Rate Coefficient of Volume Growth............................................... 3.16 3.1.7.2 Entry and Exit Rate Coefficients .................................................... 3.16 3.1.7.3 Termination Rates ........................................................................... 3.18 3.1.7.4 Transfer Rate Coefficient................................................................ 3.19 3.1.7.5 Propagation Rate Coefficients ........................................................ 3.20 3.1.7.6 Efficiency of Initiator Dissociation Constant.................................. 3.22 3.1.8 Physical Parameters ................................................................................... 3.22 3.1.8.1 Average Density and Molar Fraction.............................................. 3.22 3.1.8.2 Terpolymer Composition ................................................................ 3.23 3.1.8.3 Conversion and Polymer Volume Fraction..................................... 3.23 3.1.8.4 Glass Transition Temperature......................................................... 3.24 Chapter 3 Dynamic Model and Microcalorimetric Soft Sensor Developments 3. 1 3.2 MODEL SOLUTION TECHNIQUES....................................................3.24 3.3 THE EFFECT OF MANIPULATED VARIABLES ................................3.26 3.4 MICROCALORIMETRIC SOFT SENSOR DEVELOPMENT...............3.27 3.5. CALORIMETRIC DYNAMIC MODELING ..........................................3.28 3.5.1 Reactor Species Balance ............................................................................ 3.28 3.5.2 Reactor Energy Balance............................................................................. 3.29 3.5.2.1 Heat Flow Due to Feed Input.......................................................... 3.30 3.5.2.2 Heat Flux across Reactor Wall........................................................ 3.30 3.5.2.3 Heat Loss to Surroundings.............................................................. 3.31 3.5.2.4 Heat Flow due to Stirrer.................................................................. 3.32 3.5.3 Monomer Conversion and Terpolymer Composition ................................ 3.33 3.6 CONCLUSION.....................................................................................3.35 BIBLIOGRAPHY .......................................................................................3.37 Chapter 3 Dynamic Model and Microcalorimetric Soft Sensor Developments 3. 2 Dynamic Model and Microcalorimetric Soft Sensor Developments
منابع مشابه
Online Monitoring for Industrial Processes Quality Control Using Time Varying Parameter Model
A novel data-driven soft sensor is designed for online product quality prediction and control performance modification in industrial units. A combined approach of time variable parameter (TVP) model, dynamic auto regressive exogenous variable (DARX) algorithm, nonlinear correlation analysis and criterion-based elimination method is introduced in this work. The soft sensor performance validation...
متن کاملDynamic Labor Market in a Dynamic Stochastic General Equilibrium Model: Case Study of Iranian Economy
The labor market, as one of the four markets, plays an important role in economic growth and development. So review developments in the labor market because of its close relationship with developments in other sectors is of great importance. This study tries to examine the dynamics of the labor market by adjusting for a New Keynesian dynamic stochastic general equilibrium model for the Iranian ...
متن کاملScale-Dependent Dynamic Behavior of Nanowire-Based Sensor in Accelerating Field
The accelerating fields (e. g. centrifugal acceleration and constant acceleration) can change the physical performance of nano-sensors significantly. Herein, a new size-dependent model is developed to investigate the scale-dependent dynamic behavior of nanowire-fabricated sensor operated in an accelerating field. The scale-dependent equation of motion is developed by employing a consolidation o...
متن کاملA novel soft sensor model based on artificial neural network in the fermentation process
Some crucial process variables in fermentation process could not be measured directly. Soft sensor technology provided an effective way to solve the problem. There has been considerable interest in modeling a soft sensor by using artificial neural network (ANN) in bioprocess. To generate a more efficient soft sensor model, we proposed a novel soft sensor model based on artificial neural network...
متن کاملModel-based Approach for Multi-sensor Fault Identification in Power Plant Gas Turbines
In this paper, the multi-sensor fault diagnosis in the exhaust temperature sensors of a V94.2 heavy duty gas turbine is presented. A Laguerre network-based fuzzy modeling approach is presented to predict the output temperature of the gas turbine for sensor fault diagnosis. Due to the nonlinear dynamics of the gas turbine, in these models the Laguerre filter parts are related to the linear d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008